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ABSTRACT
Following our recent work on the benzene molecule [P.-F. Loos, Y. Damour, and A. Scemama, J. Chem. Phys. 153, 176101 (2020)],
motivated by the blind challenge of Eriksen et al. [J. Phys. Chem. Lett. 11, 8922 (2020)] on the same system, we report accurate
full configuration interaction (FCI) frozen-core correlation energy estimates for 12 five- and six-membered ring molecules (cyclopen-
tadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, s-tetrazine, and s-triazine) in the
standard correlation-consistent double-ζ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with an estimated error
smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction calculations performed with
the configuration interaction using a perturbative selection made iteratively algorithm. Having at our disposal these accurate refer-
ence energies, the respective performance and convergence properties of several popular and widely used families of single-reference
quantum chemistry methods are investigated. In particular, we study the convergence properties of (i) the Møller–Plesset perturba-
tion series up to fifth-order (MP2, MP3, MP4, and MP5), (ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4,
and (iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as
well as the completely renormalized CC model, CR-CC(2,3), is also investigated. We show that MP4 provides an interesting accu-
racy/cost ratio, while MP5 systematically worsens the correlation energy estimates. In addition, CC3 outperforms CCSD(T) and
CR-CC(2,3), as well as its more expensive parent CCSDT. A similar trend is observed for the methods including quadruple excitations, where
the CC4 model is shown to be slightly more accurate than CCSDTQ, both methods providing correlation energies within 2 millihartree of
the FCI limit.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065314

I. INTRODUCTION

Electronic structure theory relies heavily on approximations.1–3

Loosely speaking, to make any method practical, three main approx-
imations are typically enforced. The first fundamental approx-
imation, known as the Born–Oppenheimer (or clamped-nuclei)
approximation, consists in assuming that the motion of nuclei and
electrons is decoupled.4 The nuclei coordinates can then be treated
as parameters in the electronic Hamiltonian. The second central

approximation that makes calculations computationally achievable
is the basis set approximation where one introduces a set of pre-
defined basis functions to represent the many-electron wave func-
tion of the system. In most molecular calculations, a set of one-
electron, atom-centered Gaussian basis functions are introduced
to expand the so-called one-electron molecular orbitals that are
then used to build the many-electron Slater determinant(s). The
third and most relevant approximation in the present context is the
ansatz (or form) of the electronic wave function Ψ. For example, in
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configuration interaction (CI) methods, the wave function is
expanded as a linear combination of Slater determinants, while in
(single-reference) coupled-cluster (CC) theory,5–10 a reference Slater
determinant Ψ0 [usually taken as the Hartree–Fock (HF) wave func-
tion] is multiplied by a wave operator defined as the exponentiated
excitation operator T̂ = ∑n

k=1T̂k (where n is the number of electrons
and T̂k is the kth-degree excitation operator).

The truncation of T̂ allows us to define a hierarchy of non-
variational and size-extensive methods with increasing levels of
accuracy: CC with singles and doubles (CCSD),5,11 CC with sin-
gles, doubles, and triples (CCSDT),12,13 and CC with singles, dou-
bles, triples, and quadruples (CCSDTQ),14,15 with the correspond-
ing formal computational scalings of O(N6

), O(N8
), and O(N10

),
respectively (where N denotes the number of orbitals). Parallel to
the “complete” CC series presented above, an alternative family of
approximate iterative CC models has been developed by the Aarhus
group in the context of CC response theory16 where one skips the
most expensive terms and avoids the storage of the higher-excitation
amplitudes: CC2,17 CC3,18,19 and CC4.20,21 These iterative meth-
ods scale as O(N5

), O(N7
), and O(N9

), respectively, and can be
seen as cheaper approximations of CCSD, CCSDT, and CCSDTQ.
Coupled-cluster methods have been particularly successful at com-
puting accurately ground- and excited-state properties for small-
and medium-sized molecules.22–28

A similar systematic truncation strategy can be applied to CI
methods, leading to the well-established family of methods known
as CISD, CISDT, CISDTQ, and so on, where one systematically
increases the maximum excitation degree of the determinants taken
into account. Except for full CI (FCI) where all determinants from
the Hilbert space (i.e., with excitation degree up to n) are consid-
ered, truncated CI methods are variational but lack size-consistency.
The non-variationality of truncated CC methods being, in prac-
tice, less of an issue than the size-inconsistency of the truncated
CI methods, the formers have naturally overshadowed the latter
in the electronic structure landscape. However, a different strategy
recently came back in the limelight in the context of CI methods.29–40

Indeed, selected CI (SCI) methods,41–52 where one iteratively selects
the important determinants from the FCI space (usually) based on
a perturbative criterion, have been recently shown to be highly suc-
cessful in order to produce reference energies for both ground and
excited states in small- and medium-sized molecules,53–72 thanks to
efficient deterministic, stochastic, or hybrid algorithms well suited
for massive parallelization. We refer the interested reader to Refs.
73 and 74 for recent reviews. SCI methods are based on a well-
known fact: Among the very large number of determinants con-
tained in the FCI space, only a tiny fraction of them significantly
contributes to the energy (see, for example, Ref. 75). Accordingly,
the SCI+PT2 family of methods performs a sparse exploration of the
FCI space by selecting iteratively only the most energetically relevant
determinants of the variational space and supplementing it with a
second-order perturbative correction (PT2).31,52,67,76,77 Although the
formal scaling of such algorithms remains exponential, the prefactor
is greatly reduced, which explains their current attractiveness in the
electronic structure community, thanks to their much wider applica-
bility than their standard FCI parent. Note that, very recently, several
groups78–80 have coupled CC and SCI methods via the externally
corrected CC methodology,81 showing promising performances for
weakly and strongly correlated systems.

A rather different strategy in order to reach the holy grail
FCI limit is to resort to Møller–Plesset (MP) perturbation the-
ory,82 whose popularity originates from its black-box nature, size-
extensivity, and relatively low computational requirement, making
it easily applied to a broad range of molecular systems. Again, at
least in theory, one can obtain the exact energy of the system by
ramping up the degree of the perturbative series.83 The second-
order Møller–Plesset (MP2) method82 [which scales as O(N5

)] has
been broadly adopted in quantum chemistry for several decades
and is now included in the increasingly popular double-hybrid
functionals84 alongside exact exchange. Its higher-order variants
(MP3,85 MP4,86 MP5,87 and MP688,89 that scale as O(N6

), O(N7
),

O(N8
), andO(N9

), respectively) have been investigated much more
scarcely. However, it is now widely recognized that the series of
MP approximations might show erratic, slowly convergent, or diver-
gent behavior that limits its applicability and systematic improv-
ability.83,90–99 Again, MP perturbation theory and CC methods can
be coupled. The most iconic example of such coupling, namely,
the CCSD(T) method,100 includes iteratively the single and double
excitations and perturbatively (from MP4 and partially MP5) the
triple excitations, leading to the so-called “gold-standard” of quan-
tum chemistry for weakly correlated systems, thanks to its excellent
accuracy/cost ratio.

Motivated by the recent blind test of Eriksen et al.68 report-
ing the performance of a large panel of emerging electronic struc-
ture methods [the many-body expansion FCI (MBE-FCI),101–104

adaptive sampling CI (ASCI),47,105,106 iterative CI (iCI),48,107–109

semistochastic heat-bath CI (SHCI),46,56,77 the full coupled-cluster
reduction (FCCR),110,111 density-matrix renormalization group
(DMRG),112–114 adaptive-shift FCI quantum Monte Carlo (AS-
FCIQMC),41,115,116 and cluster-analysis-driven FCIQMC (CAD-
FCIQMC)117,118] on the non-relativistic frozen-core correlation
energy of the benzene molecule in the standard correlation-
consistent double-ζ Dunning basis set (cc-pVDZ), some of us have
recently investigated the performance of the SCI method known
as Configuration Interaction using a Perturbative Selection made
Iteratively (CIPSI).31,42,44,52,67 on the very same system66 [see also
Ref. 119 for a study of the performance of phaseless auxiliary-
field quantum Monte Carlo (ph-AFQMC)120]. In the continuity
of this recent work, we report here a large extension by accu-
rately estimating the (frozen-core) FCI/cc-pVDZ correlation energy
of 12 cyclic molecules (cyclopentadiene, furan, imidazole, pyr-
role, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine,
s-tetrazine, and s-triazine) with the help of CIPSI employing ener-
getically optimized orbitals at the same level of theory.69,121 These
systems are depicted in Fig. 1. This set of molecular systems cor-
responds to Hilbert spaces with sizes ranging from 1029 to 1036.
In addition to CIPSI, the performance and convergence proper-
ties of several series of methods are investigated. In particular,
we study (i) the MP perturbation series up to fifth-order (MP2,
MP3, MP4, and MP5), (ii) the CC2, CC3, and CC4 approximate
series, and (ii) the “complete” CC series up to quadruples (i.e.,
CCSD, CCSDT, and CCSDTQ). The performance of the ground-
state gold standard CCSD(T) as well as the completely renormal-
ized (CR) CC model, CR-CC(2,3)8,122–125 is also investigated. From
a theoretical point of view, one would expect the following rank-
ing: MP2 < CC2 < MP3 < CCSD < MP4 < CCSD(T) < CR-
CC(2,3) < CC3 < CCSDT < MP5 < CC4 < CCSDTQ. However, as
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FIG. 1. Five-membered rings (top) and six-membered rings (bottom) considered in this study.

we shall see below, this ranking is slightly altered for the present
systems.

The present manuscript is organized as follows: In Sec. II, we
provide theoretical details about the CIPSI algorithm and the orbital
optimization procedure employed here. Section III deals with com-
putational details concerning geometries, basis sets, and methods. In
Sec. IV, we report our reference FCI correlation energies for the five-
membered and six-membered cyclic molecules obtained, thanks to
extrapolated orbital-optimized CIPSI calculations (Sec. IV A). These
reference correlation energies are then used to benchmark and study
the convergence properties of various perturbative and CC methods
(Sec. IV B). Finally, we draw our conclusions in Sec. V.

II. CIPSI WITH OPTIMIZED ORBITALS
Here, we provide key details about the CIPSI method31,67 as

well as the orbital optimization procedure that has been shown
to be highly effective in the context of SHCI by Umrigar and co-
workers.68,69,121 Although we focus on the ground state, the present
discussion can be easily extended to excited states.71,126

At the kth iteration, the total CIPSI energy E(k)CIPSI is defined as
the sum of the variational energy,

E(k)var =
⟨Ψ(k)var ∣Ĥ∣Ψ

(k)
var ⟩

⟨Ψ(k)var ∣Ψ
(k)
var ⟩

, (1)

and a second-order perturbative energy correction,

E(k)PT2 = ∑
α∈Ak

e(k)α = ∑
α∈Ak

∣⟨Ψ(k)var ∣Ĥ∣α⟩∣
2

E(k)var − ⟨α∣Ĥ∣α⟩
, (2)

where Ĥ is the (non-relativistic) electronic Hamiltonian,

Ψ(k)var =∑
I∈Ik

c(k)I ∣I⟩ (3)

is the variational wave function, Ik is the set of internal determinants
∣I⟩, and Ak is the set of external determinants (or perturbers) ∣α⟩ that
do not belong to the variational space at the kth iteration but are
linked to it via a nonzero matrix element, i.e., ⟨Ψ(k)var ∣Ĥ∣α⟩ ≠ 0. The

sets Ik and Ak define, at the kth iteration, the internal and external
spaces, respectively. In the selection step, the perturbers correspond-
ing to the largest ∣e(k)α ∣ values are then added to the variational space
at the next iteration. In our implementation, the size of the varia-
tional space is roughly doubled at each iteration. Hereafter, we label
these iterations over k, which consist in enlarging the variational
space as macroiterations. In practice, E(k)var is the lowest eigenvalue
of the N(k)det ×N(k)det CI matrix with elements ⟨I∣Ĥ∣J⟩ obtained via
Davidson’s algorithm.127 The magnitude of E(k)PT2 provides, at iter-
ation k, a qualitative idea of the distance to the FCI limit.52 We
then linearly extrapolate, using large variational wave functions, the
CIPSI energy to EPT2 = 0 (which effectively corresponds to the FCI
limit). Further details concerning the extrapolation procedure are
provided below (see Sec. IV).

Orbital optimization techniques at the SCI level are theoreti-
cally straightforward, but practically challenging. Some of the tech-
nologies presented here have been borrowed from complete-active-
space self-consistent-field (CASSCF) methods,128–132 but one of the
strengths of SCI methods is that one does not need to select an active
space and to classify orbitals as active, inactive, and virtual orbitals.
Here, we detail our orbital optimization procedure within the CIPSI
algorithm and we assume that the variational wave function is
normalized, i.e., ⟨Ψvar∣Ψvar⟩ = 1.

As stated in Sec. I, Evar depends not only on both the CI coef-
ficients {cI}1≤I≤Ndet [see Eq. (3)] but also on the orbital rotation
parameters {κpq}1≤p,q≤N . Motivated by cost saving arguments, we
have chosen to optimize separately the CI and orbital coefficients
by alternatively diagonalizing the CI matrix after each selection step
and then rotating the orbitals until the variational energy, for a given
number of determinants, is minimal. We refer the interested reader
to the recent work of Yao and Umrigar for a detailed comparison of
coupled, uncoupled, and partially coupled optimizations within SCI
methods.121 Following the standard procedure,2 we conveniently
rewrite the variational energy as

Evar(c, κ) = ⟨Ψvar∣eκ̂Ĥe−κ̂
∣Ψvar⟩, (4)

where c gathers the CI coefficients, κ represents the orbital rotation
parameters, and
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κ̂ =∑
p<q
∑

σ
κpq(â†pσ âqσ − â†qσ âpσ) (5)

is a real-valued one-electron antisymmetric operator, which creates
an orthogonal transformation of the orbital coefficients when expo-
nentiated, with âpσ (â†pσ) being the second quantization annihilation
(creation) operator that annihilates (creates) a spin-σ electron in the
real-valued spatial orbital ϕp(r).

2

Applying the Newton–Raphson method by Taylor-expanding
the variational energy to second order around κ = 0, i.e.,

Evar(c, κ) ≈ Evar(c, 0) + g ⋅ κ +
1
2

κ†
⋅H ⋅ κ, (6)

one can iteratively minimize the variational energy with respect to
the parameters κpq by setting

κ = −H−1
⋅ g, (7)

where g and H are the orbital gradient and Hessian matrices, respec-
tively, both evaluated at κ = 0. Their elements are explicitly given by
the following expressions:133,134

gpq =
∂2Evar(c, κ)

∂κpq
∣

κ=0

=∑
σ
⟨Ψvar∣[â†pσ âqσ − â†qσ âpσĤ]∣Ψvar⟩

= Ppq[∑
r
(hr

p γq
r − hq

r γr
p) +∑

rst
(vrs

ptΓ
qt
rs − vqt

rs Γrs
pt)] (8)

and

Hpq,rs =
∂Evar(c, κ)
∂κpqκrs

∣

κ=0

= PpqPrs{
1
2∑σσ′
⟨Ψvar∣[â†rσ′ âsσ′[â†pσ âqσĤ]]∣Ψvar⟩

+
1
2∑σσ′
⟨Ψvar∣[â†pσ âqσ[â†rσ′ âsσ′Ĥ]]∣Ψvar⟩}

= PpqPrs{
1
2∑u
[δqr(hu

pγs
u + hs

uγu
p) + δps(hu

r γq
u + hq

uγr
u)]

− (hs
pγq

r + hq
r γs

p) +
1
2∑tuv

δqr(vuv
pt Γst

uv + vst
uvΓuv

pt )

+
1
2∑tuv

δps(vqt
uvΓuv

rt + vuv
rt Γqt

uv) +∑
uv
(vuv

pr Γqs
uv + vqs

uvΓuv
ps )

−∑
tu
(vst

puΓqu
rt + vtr

puΓqu
tr + vqu

rt Γst
pu + vqu

tr Γts
pu)}, (9)

where δpq is the Kronecker delta, Ppq = 1 − (p↔ q) is a permutation
operator,

γq
p =∑

σ
⟨Ψvar∣â†pσ âqσ ∣Ψvar⟩, (10a)

Γrs
pq =∑

σσ′
⟨Ψvar∣â†pσ â†rσ′ âsσ′ âqσ ∣Ψvar⟩ (10b)

are the elements of the one- and two-electron density matrices, and

hq
p = ∫ ϕp(r) ĥ(r) ϕq(r)dr, (11a)

vrs
pq =∬ ϕp(r1)ϕq(r2)

1
∣r1 − r2∣

ϕr(r1)ϕs(r2)dr1dr2 (11b)

are the one- and two-electron integrals, respectively.
Because the size of the CI space is much larger than the orbital

space, for each macroiteration, we perform multiple microiterations
that consist in iteratively minimizing the variational energy (4) with
respect to the N(N − 1)/2 independent orbital rotation parame-
ters for a fixed set of determinants. After each microiteration (i.e.,
orbital rotation), the one- and two-electron integrals [see Eqs. (11a)
and (11b)] have to be updated. Moreover, the CI matrix must be
re-diagonalized and new one- and two-electron density matrices
[see Eqs. (10a) and (10b)] have to be computed. Microiterations
are stopped when a stationary point is found, i.e., ∥g∥∞ < τ, where
τ is a user-defined threshold that has been set to 10−4 a.u. in the
present study, and a new CIPSI selection step is performed. Note
that a tight convergence is not critical here as a new set of micro-
iterations is performed at each macroiteration and a new produc-
tion CIPSI run is performed from scratch using the final set of
orbitals (see Sec. III). This procedure might sound computation-
ally expensive, but one has to realize that the microiterations are
usually performed only for relatively compact variational spaces.
Therefore, the computational bottleneck of this approach remains
the diagonalization of the CI matrix for very large variational
spaces.

To enhance the convergence of the microiteration process, we
employ an adaptation of the Newton–Raphson method known as
“trust region.”135 This popular variant defines a region where the
quadratic approximation (6) is an adequate representation of the
objective energy function (4) and it evolves during the optimization
process in order to preserve the adequacy via a constraint on the
step size preventing it from overstepping, i.e., ∥κ∥ ≤ Δ, where Δ is
the trust radius. By introducing a Lagrange multiplier λ to control
the trust-region size, one replaces Eq. (7) by κ = −(H + λ1)−1

⋅ g.
The addition of the level shift λ ≥ 0 removes the negative eigenval-
ues and ensures the positive definiteness of the Hessian matrix by
reducing the step size. By choosing the right value of λ, ∥κ∥ is con-
strained within a hypersphere of radius Δ and is able to evolve from
the Newton direction at λ = 0 to the steepest descent direction as
λ grows. The evolution of the trust radius during the optimization
and the use of a condition to reject the step when the energy rises
ensure the convergence of the algorithm. More details can be found
in Ref. 135.

III. COMPUTATIONAL DETAILS
The geometries of the 12 systems considered in the present

study were all obtained at the CC3/aug-cc-pVTZ level of theory and
were extracted from a previous study.64 Note that, for the sake of
consistency, the geometry of benzene considered here is different
from the one of Ref. 66, which was obtained at a lower level of
theory [MP2/6-31G(d)].136 The MP2, MP3, MP4, CC2, CC3, CC4,
CCSD, CCSDT, and CCSDTQ calculations were performed with
CFOUR,137 the CR-CC(2,3) calculations were made with GAMESS
2014R1,138 and MP5 and CCSD(T) calculations were computed
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with GAUSSIAN 09.139 The CIPSI calculations were performed
with QUANTUM PACKAGE.67 In the current implementation, the
selection step and the PT2 correction are computed simultane-
ously via a hybrid semistochastic algorithm.67,76 Here, we employ
the renormalized version of the PT2 correction, which was recently
implemented and tested for a more efficient extrapolation to the FCI
limit, thanks to a partial resummation of the higher orders of pertur-
bation.67 We refer the interested reader to Ref. 67 for further details.
For all these calculations, Dunning’s correlation-consistent double-ζ
basis (cc-pVDZ) has been employed.

Although the FCI energy has the enjoyable property of being
independent of the set of one-electron orbitals used to construct
the many-electron Slater determinants, as a truncated CI method,
the convergence properties of CIPSI are strongly dependent on
this orbital choice. In the present study, we investigate, in partic-
ular, the convergence behavior of the CIPSI energy for two sets
of orbitals: natural orbitals (NOs) and optimized orbitals (OOs).
Following our usual procedure,58,59,61,63–66,73,126 we perform first a

preliminary SCI calculation using HF orbitals in order to generate
a SCI wave function with at least 107 determinants. Natural orbitals
are computed based on this wave function, and they are used to per-
form a new CIPSI run up to 8 × 107 determinants. Successive orbital
optimizations are then performed, which consist in minimizing
the variational CIPSI energy at each macroiteration up to ∼2 × 105

determinants. When convergence is achieved in terms of orbital
optimization, as our production run, we perform a new CIPSI calcu-
lation from scratch using this set of optimized orbitals up to 8 × 107

determinants. Using optimized orbitals has the undeniable advan-
tage to produce, for a given variational energy, more compact CI
expansions (see Sec. IV). For the benzene molecule, we have also
explored the use of localized orbitals (LOs) that are produced with
the Boys–Foster localization procedure140 that we apply to the natu-
ral orbitals in several orbital windows in order to preserve a strict
σ–π separation in the planar systems considered here.66 Because
they take advantage of the local character of electron correlation,
localized orbitals have been shown to provide faster convergence

FIG. 2. ΔEvar (solid) and ΔEvar + EPT2 (dashed) computed in the cc-pVDZ basis as functions of the number of determinants Ndet in the variational space for the 12 cyclic
molecules represented in Fig. 1. Two sets of orbitals are considered: natural orbitals (NOs, in red) and optimized orbitals (OOs, in blue). The FCI estimate of the correlation
energy is represented as a thick black line.
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toward the FCI limit compared to natural orbitals.62,66,68,141–144 As
we shall see below, employing optimized orbitals has the advan-
tage to produce an even smoother and faster convergence of the SCI
energy toward the FCI limit. Note that both localized and optimized
orbitals do break the spatial symmetry. Unlike excited-state calcu-
lations where it is important to enforce that the wave functions are
eigenfunctions of the Ŝ2 spin operator,145 the present wave functions
do not fulfill this property as we aim for the lowest possible energy of
a closed-shell singlet state. We have found that ⟨Ŝ2

⟩ is, nonetheless,
very close to zero (∼ 10−3) for each system.

The present CIPSI calculations have been performed on the
AMD partition of GENCI’s Irene supercomputer. Each Irene’s AMD
node is a dual-socket AMD Rome (EPYC) central processing unit
(CPU) at 2.60 GHz with 256GiB of RAM, with a total of 64 physical
cores per socket. These nodes are connected via Infiniband HDR100.
In total, the present calculations have required around 3 × 106 core
hours.

All the data (geometries, energies, etc.) and the supplementary
material associated with the present manuscript are openly available
in Zenodo at http://doi.org/10.5281/zenodo.5150663.

IV. RESULTS AND DISCUSSION
A. CIPSI estimates

We first study the convergence of the CIPSI energy as a func-
tion of the number of determinants. Our motivation here is to gen-
erate FCI-quality reference correlation energies for the 12 cyclic
molecules represented in Fig. 1 in order to benchmark the perfor-
mances of various mainstream MP and CC methods (see Sec. IV B).
For the natural and optimized orbital sets, we report, in Fig. 2, the
evolution of the variational correlation energy ΔEvar = Evar − EHF
(where EHF is the HF energy) and its perturbatively corrected value
ΔEvar + EPT2 with respect to the number of determinants Ndet for

FIG. 3. ΔEvar as a function of EPT2 computed in the cc-pVDZ basis for the 12 cyclic molecules represented in Fig. 1. Two sets of orbitals are considered: natural orbitals
(NOs, in red) and optimized orbitals (OOs, in blue). The five-point weighted linear fit using the five largest variational wave functions for each set is depicted as a dashed
black line. The weights are taken as the inverse square of the perturbative corrections. The FCI estimate of the correlation energy is represented as a thick black line.
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FIG. 4. ΔEvar (solid) and ΔEvar + EPT2 (dashed) computed in the cc-pVDZ basis
as functions of the number of determinants Ndet in the variational space for the
benzene molecule. Three sets of orbitals are considered: natural orbitals (NOs, in
red), localized orbitals (LOs, in green), and optimized orbitals (OOs, in blue). The
FCI estimate of the correlation energy is represented as a thick black line.

each cyclic molecule. As compared to natural orbitals (solid red
lines), one can see that, for a given number of determinants, the use
of optimized orbitals greatly lowers ΔEvar (solid blue lines). Adding
the perturbative correction EPT2 yields very similar curves for both
sets of orbitals (dashed lines). This indicates that, for a given num-
ber of determinants, EPT2 (which, we recall, provides a qualitative
idea to the distance to the FCI limit) is much smaller for optimized
orbitals than for natural orbitals. This is further evidenced in Fig. 3

where we show the behavior of ΔEvar as a function of EPT2 for both
sets of orbitals. From Fig. 3, it is clear that one produces smaller
EPT2 values when optimized orbitals are selected, hence facilitating
the extrapolation procedure to the FCI limit (see below). The five-
point weighted linear fit using the five largest variational wave func-
tions is also represented (dashed black lines), while the FCI estimate
of the correlation energy (solid black line) is reported for reference
in Figs. 2 and 3.

Figure 4 compares the convergence of ΔEvar for natural, local-
ized, and optimized orbitals for benzene. As mentioned in Sec. III,
although both the localized and optimized orbitals break the spa-
tial symmetry to take advantage of the local nature of electron cor-
relation, the latter set further improves on the use of former set.
More quantitatively, optimized orbitals produce the same varia-
tional energy as localized orbitals with, roughly, a tenfold reduction
in the number of determinants. A similar improvement is observed
going from natural to localized orbitals. According to these observa-
tions, all our FCI correlation energy estimates have been produced
from the set of optimized orbitals.

To this end, we have extrapolated the orbital-optimized vari-
ational CIPSI correlation energies to EPT2 = 0 via a weighted five-
point linear fit using the five largest variational wave functions (see
Fig. 3). The fitting weights have been taken as the inverse square of
the perturbative corrections. Our final FCI correlation energy esti-
mates are reported in Tables I and II for the five- and six-membered
rings, respectively, alongside their corresponding fitting error. The
stability of these estimates is illustrated by the results gathered in
Table III, where we list the extrapolated correlation energies ΔEextrap
and their associated fitting errors obtained via weighted linear fits
varying the number of fitting points from 3 to 7. The extrapolation
distance ΔEdist defined as the difference between the final computed
energy ΔEfinal and ΔEextrap is also reported. Although we cannot

TABLE I. Total energy E (in Eh) and correlation energy ΔE (in mEh) for the frozen-core ground state of five-membered rings in the cc-pVDZ basis set. For the CIPSI estimates
of the FCI correlation energy, the fitting error associated with the weighted five-point linear fit is reported in parentheses.

Cyclopentadiene Furan Imidazole Pyrrole Thiophene

Method E ΔE E ΔE E ΔE E ΔE E ΔE

HF −192.8083 −228.6433 −224.8354 −208.8286 −551.3210

MP2 −193.4717 −663.4 −229.3508 −707.5 −225.5558 −720.4 −209.5243 −695.7 −551.9825 −661.5
MP3 −193.5094 −701.0 −229.3711 −727.8 −225.5732 −737.8 −209.5492 −720.6 −552.0104 −689.4
MP4 −193.5428 −734.5 −229.4099 −766.6 −225.6126 −777.2 −209.5851 −756.5 −552.0476 −726.6
MP5 −193.5418 −733.4 −229.4032 −759.9 −225.6061 −770.8 −209.5809 −752.3 −552.0426 −721.6

CC2 −193.4782 −669.9 −229.3605 −717.2 −225.5644 −729.0 −209.5311 −702.5 −551.9905 −669.5
CC3 −193.5449 −736.6 −229.4090 −765.7 −225.6115 −776.1 −209.5849 −756.3 −552.0473 −726.3
CC4 −193.5467 −738.4 −229.4102 −766.9 −225.6126 −777.2 −209.5862 −757.6 −552.0487 −727.7

CCSD −193.5156 −707.2 −229.3783 −735.0 −225.5796 −744.2 −209.5543 −725.7 −552.0155 −694.5
CCSDT −193.5446 −736.2 −229.4076 −764.3 −225.6099 −774.6 −209.5838 −755.2 −552.0461 −725.1
CCSDTQ −193.5465 −738.2 −229.4100 −766.7 −225.6123 −776.9 −209.5860 −757.4 −552.0485 −727.5

CCSD(T) −193.5439 −735.6 −229.4073 −764.0 −225.6099 −774.5 −209.5836 −754.9 −552.0458 −724.8
CR-CC(2,3) −193.5439 −735.6 −229.4075 −764.2 −225.6098 −774.5 −209.5835 −754.9 −552.0459 −724.9

FCI −739.2(1) −768.2(1) −778.2(1) −758.5(1) −728.9(3)
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TABLE III. Extrapolation distance ΔEdist (in mEh) defined as the difference between the final computed energy ΔEfinal (in mEh) and the extrapolated correlation energies ΔEextrap
(in mEh) computed in the cc-pVDZ basis for the 12 cyclic molecules represented in Fig. 1 and their associated fitting errors (in mEh) obtained via weighted linear fits with a
varying number of points. Two sets of orbitals are considered: natural orbitals and optimized orbitals. The weights are taken as the inverse square of the perturbative corrections.
For a m-point fit, the m largest variational wave functions are used. The bold values correspond to the ones used to produce our FCI estimates in Tables I and II.

Natural orbitals Optimized orbitals

Molecule
Number of

fitting points ΔEfinal ΔEextrap ΔEdist Fitting error ΔEfinal ΔEextrap ΔEdist Fitting error

Cyclopentadiene

3 −728.941 −740.639 11.699 0.273 −731.987 −739.295 7.308 0.199
4 −728.941 −740.243 11.303 0.306 −731.987 −739.309 7.322 0.088
5 −728.941 −740.047 11.106 0.242 −731.987 −739.230 7.243 0.074
6 −728.941 −739.952 11.011 0.187 −731.987 −739.304 7.317 0.072
7 −728.941 −739.761 10.820 0.204 −731.987 −739.292 7.305 0.055

Furan

3 −758.946 −766.090 7.144 0.729 −761.715 −767.790 6.076 0.064
4 −758.946 −766.445 7.499 0.459 −761.715 −768.104 6.389 0.196
5 −758.946 −766.582 7.636 0.318 −761.715 −768.194 6.479 0.135
6 −758.946 −766.366 7.420 0.288 −761.715 −768.060 6.345 0.131
7 −758.946 −766.507 7.561 0.254 −761.715 −768.086 6.372 0.101

Imidazole

3 −767.314 −778.148 10.833 2.197 −771.362 −778.295 6.932 0.356
4 −767.314 −777.436 10.122 1.107 −771.362 −778.270 6.908 0.150
5 −767.314 −776.300 8.986 0.996 −771.362 −778.178 6.816 0.105
6 −767.314 −776.104 8.789 0.712 −771.362 −778.174 6.812 0.072
7 −767.314 −776.098 8.784 0.541 −771.362 −778.051 6.689 0.099

Pyrrole

3 −748.961 −758.309 9.348 0.447 −751.862 −758.650 6.788 0.321
4 −748.961 −758.749 9.788 0.393 −751.862 −758.389 6.527 0.174
5 −748.961 −758.405 9.444 0.359 −751.862 −758.460 6.598 0.110
6 −748.961 −758.136 9.175 0.334 −751.862 −758.352 6.490 0.100
7 −748.961 −757.990 9.029 0.283 −751.862 −758.347 6.485 0.075

Thiophene

3 −718.769 −728.054 9.285 0.134 −721.757 −728.744 6.987 0.691
4 −718.769 −728.240 9.471 0.139 −721.757 −729.052 7.295 0.331
5 −718.769 −728.243 9.474 0.087 −721.757 −728.948 7.191 0.203
6 −718.769 −728.242 9.472 0.062 −721.757 −728.987 7.230 0.140
7 −718.769 −728.420 9.651 0.144 −721.757 −729.067 7.310 0.117

Benzene

3 −841.030 −860.350 19.3197 0.496 −848.540 −862.325 13.7847 0.279
4 −841.030 −861.949 20.9186 0.811 −848.540 −863.024 14.4842 0.424
5 −841.030 −861.807 20.7772 0.474 −848.540 −862.890 14.3496 0.266
6 −841.030 −861.110 20.0803 0.539 −848.540 −862.360 13.8202 0.383
7 −841.030 −861.410 20.3794 0.444 −848.540 −862.083 13.5435 0.339

Pyrazine

3 −887.414 −904.148 16.734 0.035 −891.249 −904.867 13.619 1.420
4 −887.414 −904.726 17.312 0.377 −891.249 −904.588 13.340 0.650
5 −887.414 −904.274 16.859 0.383 −891.249 −904.550 13.301 0.385
6 −887.414 −903.980 16.566 0.341 −891.249 −903.982 12.734 0.439
7 −887.414 −903.621 16.206 0.370 −891.249 −903.746 12.497 0.359

Pyridazine

3 −887.410 −910.856 23.446 3.053 −895.565 −909.292 13.726 0.024
4 −887.410 −908.222 20.811 1.834 −895.565 −908.808 13.243 0.230
5 −887.410 −909.282 21.871 1.191 −895.565 −908.820 13.255 0.133
6 −887.410 −912.566 25.156 1.727 −895.565 −908.342 12.777 0.303
7 −887.410 −910.694 23.283 2.210 −895.565 −908.368 12.802 0.224

Pyridine

3 −861.424 −883.025 21.601 3.919 −868.803 −883.363 14.560 0.047
4 −861.424 −883.862 22.438 1.869 −868.803 −883.413 14.610 0.029
5 −861.424 −881.664 20.240 1.760 −868.803 −882.700 13.897 0.405
6 −861.424 −880.422 18.998 1.456 −868.803 −882.361 13.558 0.341
7 −861.424 −880.191 18.768 1.084 −868.803 −882.023 13.221 0.330
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TABLE III. (Continued.)

Natural orbitals Optimized orbitals

Molecule
Number of

fitting points ΔEfinal ΔEextrap ΔEdist Fitting error ΔEfinal ΔEextrap ΔEdist Fitting error

Pyrimidine

3 −879.958 −900.386 20.428 1.884 −887.009 −900.817 13.808 0.726
4 −879.958 −901.441 21.483 0.991 −887.009 −900.383 13.374 0.356
5 −879.958 −900.354 20.396 0.865 −887.009 −900.496 13.487 0.214
6 −879.958 −900.240 20.283 0.594 −887.009 −900.698 13.689 0.190
7 −879.958 −899.689 19.732 0.565 −887.009 −900.464 13.455 0.206

s-tetrazine

3 −942.162 −958.736 16.574 0.320 −944.077 −957.559 13.4815 0.246
4 −942.162 −958.727 16.564 0.148 −944.077 −957.299 13.2221 0.160
5 −942.162 −958.500 16.337 0.172 −944.077 −957.869 13.7916 0.349
6 −942.162 −958.162 16.000 0.260 −944.077 −957.744 13.6665 0.247
7 −942.162 −958.161 15.999 0.198 −944.077 −957.709 13.6319 0.183

s-triazine

3 −898.283 −917.221 18.938 0.693 −905.180 −919.596 14.4152 0.105
4 −898.283 −918.723 20.440 0.913 −905.180 −918.457 13.2768 0.538
5 −898.283 −917.402 19.119 0.956 −905.180 −918.355 13.1745 0.312
6 −898.283 −916.517 18.233 0.862 −905.180 −918.206 13.0251 0.226
7 −898.283 −916.544 18.261 0.643 −905.180 −917.876 12.6956 0.267

provide a mathematically rigorous error bar, the data provided by
Table III show that the extrapolation procedure is robust and that
our FCI estimates carry an error of the order of 1 millihartree. Log-
ically, the FCI estimates for the five-membered rings seem slightly
more accurate than for the (larger) six-membered rings. It is pleas-
ing to see that, although different geometries are considered, our
present estimate of the frozen-core correlation energy of the ben-
zene molecule in the cc-pVDZ basis (−862.9 mEh) is very close to
the one reported in Ref. 66 (−863.4 mEh).

Table III does report extrapolated correlation energies and
fitting errors for both natural and optimized orbitals. Again, the
superiority of the latter set is clear as both the variation in extrap-
olated values and the fitting error are much larger with the natu-
ral set. Moreover, the extrapolation distance ΔEdist is systematically
decreases by several mEh. Taking cyclopentadiene as an example, the
extrapolated values vary by almost 1 mEh with natural orbitals and
less than 0.1 mEh with the optimized set. The fitting errors follow the
same trend.

B. Benchmark of CC and MP methods
Using the CIPSI estimates of the FCI correlation energy pro-

duced in Sec. IV A, we now study the performance and convergence
properties of three series of methods: (i) MP2, MP3, MP4, and MP5;
(ii) CC2, CC3, and CC4; and (iii) CCSD, CCSDT, and CCSDTQ.
Additionally, we also report CCSD(T) and CR-CC(2,3) correlation
energies. The raw data are reported in Tables I and II for the five-
and six-membered rings, respectively. In Fig. 5, we show, for each
molecule, the convergence of the correlation energy for each series
of methods as a function of the formal computational scaling of the
corresponding method. Statistical quantities [mean absolute error
(MAE), mean signed error (MSE), minimum (Min), and maximum
(Max) absolute errors with respect to the FCI reference values] are

also reported in Table IV for each method as well as their formal
computational scaling.

First, we investigate the “complete” and well-established series
of methods CCSD, CCSDT, and CCSDTQ. Unfortunately, CC with
singles, doubles, triples, quadruples, and pentuples (CCSDTQP) cal-
culations are out of reach here.146,147 As expected for the present set
of weakly correlated systems, going from CCSD to CCSDTQ, one
systematically and quickly improves the correlation energies with
respective MAEs of 39.4, 4.5, and 1.8 mEh for CCSD, CCSDT, and
CCSDTQ. As usually observed, CCSD(T) (MAE of 4.5 mEh) pro-
vides similar correlation energies than the more expensive CCSDT
method by computing perturbatively (instead of iteratively) the
triple excitations, while CCSD(T) and CR-CC(2,3) perform equally
well.

Second, we investigate the approximate CC series of methods
CC2, CC3, and CC4. As observed in our recent study on excitation
energies,72 CC4, which returns a MAE of 1.5 mEh, is an outstanding
approximation to its CCSDTQ parent (MAE of 1.8 mEh) and is, in
the present case, even slightly more accurate in terms of mean errors
as well as maximum and minimum absolute errors. Moreover, we
observe that CC3 provides very accurate correlation energies with a
MAE of 2.7 mEh, showing that this iterative method is particularly
effective for ground-state energetics and outperforms both the per-
turbative CCSD(T) and iterative CCSDT models. It is important to
mention that even if the two families of CC methods studied here
are known to be non-variational (see Sec. I), for the present set of
weakly correlated molecular systems, they never produce a lower
energy than the FCI estimate as illustrated by the systematic equality
between MAEs and MSEs.

Third, let us look into the MP series that is known, as
mentioned in Sec. I, to potentially exhibit “surprising” behaviors
depending on the type of correlation at play90–99 (see Ref. 83 for
a detailed discussion). For each system, the MP series decreases
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FIG. 5. Convergence of the correlation energy (in mEh) computed in the cc-pVDZ basis as a function of formal computational scaling for the 12 cyclic molecules represented
in Fig. 1. Three series of methods are considered: (i) MP2, MP3, MP4, and MP5 (blue); (ii) CC2, CC3, and CC4 (green), and (iii) CCSD, CCSDT, CCSDTQ (red). The FCI
estimate of the correlation energy is represented as a black line.

TABLE IV. Mean absolute error (MAE), mean signed error (MSE), and minimum (Min)
and maximum (Max) absolute errors (in mEh) with respect to the FCI correlation
energy computed in the cc-pVDZ basis for various methods. The formal computational
scaling of each method is also reported.

Method Scaling MAE MSE Max Min

MP2 O(N5
) 68.4 68.4 80.6 57.8

MP3 O(N6
) 46.5 46.5 58.4 37.9

MP4 O(N7
) 2.1 2.0 4.7 0.7

MP5 O(N8
) 9.4 9.4 13.6 5.8

CC2 O(N5
) 58.9 58.9 73.5 48.9

CC3 O(N7
) 2.7 2.7 3.8 2.1

CC4 O(N9
) 1.5 1.5 2.3 0.8

CCSD O(N6
) 39.4 39.4 48.8 32.0

CCSDT O(N8
) 4.5 4.5 6.3 3.0

CCSDTQ O(N10
) 1.8 1.8 2.6 1.0

CCSD(T) O(N7
) 4.5 4.5 5.7 3.6

CR-CC(2,3) O(N7
) 5.0 5.0 6.6 3.6

monotonically up to MP4 but raises quite significantly when one
takes into account the fifth-order correction. We note that the MP4
correlation energy is always quite accurate (MAE of 2.1 mEh) and is
only a few millihartree higher than the FCI value (except in the case
of s-tetrazine where the MP4 number is very slightly below the ref-
erence value): MP5 (MAE of 9.4 mEh) is thus systematically worse
than MP4 for these weakly correlated systems. Importantly here,
one notices that MP4 [which scales as O(N7

)] is systematically on
par with the much more expensive O(N10

) CCSDTQ method that
exhibits a slightly smaller MAE of 1.8 mEh.

V. CONCLUSION
Using the SCI algorithm named Configuration Interaction using

a Perturbative Selection made Iteratively (CIPSI), we have produced
FCI-quality frozen-core correlation energies for 12 cyclic molecules
(see Fig. 1) in the correlation-consistent double-ζ Dunning basis set
(cc-pVDZ). These estimates, which probably carry an error of the
order of 1 millihartree, have been obtained by extrapolating CIPSI
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energies to the FCI limit based on a set of orbitals obtained by min-
imizing the CIPSI variational energy. Using energetically optimized
orbitals, one can reduce the size of the variational space by one order
of magnitude for the same variational energy as compared to natural
orbitals.

Thanks to these reference FCI energies, we have then bench-
marked three families of popular electronic structure methods: (i)
the MP perturbation series up to fifth-order (MP2, MP3, MP4, and
MP5); (ii) the approximate CC series CC2, CC3, and CC4; and (iii)
the “complete” CC series CCSD, CCSDT, and CCSDTQ. With a
O(N7

) scaling, MP4 provides an interesting accuracy/cost ratio for
this particular set of weakly correlated systems, while MP5 system-
atically worsen the perturbative estimates of the correlation energy.
In addition, CC3 (where the triples are computed iteratively) out-
performs the perturbative-triples CCSD(T) method with the same
O(N7

) scaling, its completely renormalized version CR-CC(2,3),
and its more expensive parent, CCSDT. A similar trend is observed
for the methods including quadruple excitations, where the O(N9

)

CC4 model has been shown to be slightly more accurate than CCS-
DTQ [which scales as O(N10

)], both methods providing correlation
energies within 2 mEh of the FCI limit. These observations slightly
alter the method ranking provided in Sec. I. Of course, the present
trends are only valid for this particular class of (weakly correlated)
molecules. For example, the performance of CC3 might decline for
larger systems. Thus, it would be desirable to have a broader variety
of systems in the future by including more challenging systems, for
example, transition metal compounds. Some work along this line is
currently being performed.

As perspectives, we are currently investigating the performance
of the present approach for excited states in order to expand the
QUEST database of vertical excitation energies.71 We hope to report
on this in the near future. The compression of the variational space
brought by optimized orbitals could also be beneficial in the context
of quantum Monte Carlo methods to generate compact, yet accurate
multi-determinant trial wave functions.148–151

SUPPLEMENTARY MATERIAL

Included in the supplementary material are the raw data for
each figure, geometries, basis set files, orbitals obtained at various
levels of theory, input and output files for each calculation, and a
standalone MATHEMATICA notebook gathering modules for generating
figures and statistics.
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